318 research outputs found

    The Heavy Photon Search Test Detector

    Get PDF
    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+ e− invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+ e− pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab

    Assessing trigeminal microstructure changes in patients with classical trigeminal neuralgia

    Get PDF
    Introduction. The crucial role of neuro-vascular conflict (NVC) in trigeminal neuralgia (TN) is getting increasingly challenged. Microstructural changes can be assessed using fractional anisotropy (FA) in diffusion tensor images (DTI). Objective. To evaluate usefulness of FA in brain MRI with DTI for TN lateralization assessment. Materials and methods. The study included 51 patients with classical TN divided into two groups: neurosurgical intervention free, post radiofrequency ablation (RFA), and a control group (patients without facial pain). All the patients were tested for NVC with FIESTA (Fast Imaging Employing Steady State Acquisition) brain MRI at 3Т. Difference in thickness of trigeminal roots on the intact and symptomatic sides was assessed for each group. The findings were compared to those in the control group. The MRI protocol was supplemented with DTI. The FA difference in thickness of the intact and symptomatic roots (∆FA) was calculated for each study group to assess microstructural root changes. The results were compared to those in the control group. Results. In trigeminal root DTIs, ∆FA over 0.075 [0.029; 0.146] is statistically significant to establish NVC-associated microstructural changes on the symptomatic side in patients without any past surgeries (p = 0,030). In patients with a history of trigeminal ganglion RFA, statistically significant (p = 0.026) thinned symptomatic trigeminal root (difference in thickness of trigeminal roots over 0.45 cm [0.4; 0.6]) was found as compared to that of the control patients. Conclusion. FA may be used as a quantitative demyelination biomarker in clinical TN. Trigeminal ganglion RFA leads to hypotrophy throughout the trigeminal nerve root

    The Heavy Photon Search test detector

    Get PDF
    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+e− invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+e− pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab

    Searching for Prompt and Long-Lived Dark Photons in Electroproduced e⁺ e⁻ Pairs with the Heavy Photon Search Experiment at JLab

    Get PDF
    The heavy photon search experiment (HPS) at the Thomas Jefferson National Accelerator Facility searches for electroproduced dark photons. We report results from the 2016 engineering run consisting of 10 608  nb−1 of data for both the prompt and displaced vertex searches. A search for a prompt resonance in the e+e− invariant mass distribution between 39 and 179 MeV showed no evidence of dark photons above the large QED background, limiting the coupling of ε2≳10−5, in agreement with previous searches. The search for displaced vertices showed no evidence of excess signal over background in the masses between 60 and 150 MeV, but had insufficient luminosity to limit canonical heavy photon production. This is the first displaced vertex search result published by HPS. HPS has taken high-luminosity data runs in 2019 and 2021 that will explore new dark photon phase space

    Determination of the proton spin structure functions for 0.05 \u3c Q(2) \u3c 5GeV(2) using CLAS

    Get PDF
    We present the results of our final analysis of the full data set of g(1)(p) (Q(2)), the spin structure function of the proton, collected using CLAS at Jefferson Laboratory in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.7 GeV were scattered from proton targets ((NH3)-N-15 dynamically polarized along the beam direction) and detected with CLAS. From the measured double spin asymmetries, we extracted virtual photon asymmetries A(1)(p) and A(2)(p) and spin structure functions g(1)(p) and g(2)(p) over a wide kinematic range (0.05 GeV2 \u3c Q(2) \u3c 5 GeV2 and 1.08 GeV\u3c W \u3c 3 GeV) and calculated moments of g(1)(p). We compare our final results with various theoretical models and expectations, as well as with parametrizations of the world data. Our data, with their precision and dense kinematic coverage, are able to constrain fits of polarized parton distributions, test pQCD predictions for quark polarizations at large x, offer a better understanding of quark-hadron duality, and provide more precise values of higher twist matrix elements in the framework of the operator product expansion

    Precision measurements of g1g_1 of the proton and the deuteron with 6 GeV electrons

    Full text link
    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions

    Transverse Polarization of Σ+(1189)\Sigma^{+}(1189) in Photoproduction on a Hydrogen Target in CLAS

    Full text link
    Experimental results on the Σ+(1189)\Sigma^+(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson laboratory are presented. The Σ+(1189)\Sigma^+(1189) was reconstructed in the exclusive reaction γ+pKS0+Σ+(1189)\gamma+p\rightarrow K^{0}_{S} + \Sigma^+(1189) via the Σ+pπ0\Sigma^{+} \to p \pi^{0} decay mode. The KS0K^{0}_S was reconstructed in the invariant mass of two oppositely charged pions with the π0\pi^0 identified in the missing mass of the detected pπ+πp\pi^+\pi^- final state. Experimental data were collected in the photon energy range EγE_{\gamma} = 1.0-3.5 GeV (s\sqrt{s} range 1.66-2.73 GeV). We observe a large negative polarization of up to 95%. As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances.Comment: pages 1

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.

    Measurement of Exclusive π0\pi^0 Electroproduction Structure Functions and their Relationship to Transversity GPDs

    Get PDF
    Exclusive π0\pi^0 electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q2Q^2, xBx_B, tt, and ϕπ\phi_\pi, in the Q2Q^2 range from 1.0 to 4.6 GeV2^2,\ t-t up to 2 GeV2^2, and xBx_B from 0.1 to 0.58. Structure functions σT+ϵσL,σTT\sigma_T +\epsilon \sigma_L, \sigma_{TT} and σLT\sigma_{LT} were extracted as functions of tt for each of 17 combinations of Q2Q^2 and xBx_B. The data were compared directly with two handbag-based calculations including both longitudinal and transversity GPDs. Inclusion of only longitudinal GPDs very strongly underestimates σT+ϵσL\sigma_T +\epsilon \sigma_L and fails to account for σTT\sigma_{TT} and σLT\sigma_{LT}, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity flip and helicity non-flip processes. The results confirm that exclusive π0\pi^0 electroproduction offers direct experimental access to the transversity GPDs.Comment: 6 pages, 2 figure

    A Bayesian analysis of pentaquark signals from CLAS data

    Get PDF
    We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+\Theta^{+} pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+\Theta^{+}. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.Comment: 5 pages, 3 figure
    corecore